
M2 Report

Field of Study: Turbulence Modeling, Data-Driven
Methods and Machine Learning

Data Driven Turbulence Model for
Transitional Aeroelastic Instabilities

Confidentiality Notice
Non-confidential report and publishable on Internet

Author:
Pedro Morel Rosa

Host Organism Tutor:
Vincent Mons

Olivier Marquet

Internship from 07/03/2022 to 05/08/2022

Name of the host organism: ONERA
Address: 8 Rue des Vertugadins

Meudon, France



Confidentiality Notice

This present document is not confidential. It can be communicated outside in paper format or
distributed in electronic format.

2 Pedro Morel Rosa / ONERA
Non-confidential report and publishable on Internet



Data Driven Turbulence Model for Transitional Aeroelastic Instabilities

Abstract
This work comparatively investigates different adjustments to the Spalart-Almaras turbulence

model through corrective control parameters obtained by data-driven techniques. From a physical
perspective, the main objective is to obtain an accurate description of the laminar separation flutter
phenomenon, which does not present satisfactory results when simulated using classical turbulence
methods and models. The complexity of the phenomenon and its highly localized character are used
in order to promote a comparative study of configurations that differ in the type of modeling and
nature of the data used for correction (parietal data or full field data). This investigation shows
that it is possible to obtain a corrected model for Spalart-Almaras that accurately provides the
aerodynamic forces intrinsic to the phenomenon. However, the data choices and the nature of the
correction are not trivial and different advantages and shortcomings are explored until an optimal
configuration is obtained. To this end, adjunct sensitivity analyzes are constantly used, in order
to provide guidelines in terms of physical understanding of the correctness and effectiveness of the
models obtained.

Keywords: turbulence modeling, computational methods, optimization, field inversion, data
assimilation, machine learning, neural networks.

Résumé
Ce travail étudie de manière comparative différents ajustements du modèle de turbulence Spalart-

Almaras grâce à des paramètres de contrôle correctifs obtenus par des techniques basées sur des
données. D’un point de vue physique, l’objectif principal est d’obtenir une description précise du
phénomène de laminar separation flutter, qui ne présente pas de résultats satisfaisants quand
simulé à l’aide de méthodes et de modèles de turbulence classiques. La complexité du phénomène et
son caractère très localisé sont mis à profit pour favoriser une étude comparative de configurations
qui diffèrent par le type de modélisation et la nature des données utilisées pour la correction (don-
nées pariétales ou données plein champ). Cette investigation montre qu’il est possible d’obtenir un
modèle corrigé pour Spalart-Almaras qui fournit avec précision les forces aérodynamiques intrin-
sèques au phénomène. Cependant, les choix de données et la nature de la correction ne sont pas
triviales, et différents avantages et inconvénients sont explorés jusqu’à l’obtention d’une configura-
tion optimale. À cette fin, des analyses de sensibilité complémentaires sont constamment utilisées,
afin de fournir des lignes directrices en termes de compréhension physique de l’exactitude et de
l’efficacité des modèles obtenus.

Mots-clés: modélisation de la turbulence, méthodes numériques, optimisation, field inversion,
assimilation de données, apprentissage automatique, réseaux de neurones.
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Introduction

The understanding of aeroelastic phenomena is of paramount importance for the progress and
evolution of aircraft technology. This branch of aerodynamics studies particularly the interaction
between aerodynamic forces and the response of a structure subjected to a certain flow. Advances
in this area made it possible to prevent disasters and failures caused by aerodynamic instabilities,
such as flutter. However, it remains with complex open questions, especially for Reynolds regimes
little explored by classical aviation. Notably, a new type of instability was observed by Poirel et al.
[1] in a transitional Reynolds regime (Re 104 - 105) for a NACA0012 airfoil at low incidences. It
is characterized by a self-sustained pitch oscillation, and caused by the detachment of the initially
laminar boundary layer, followed by its transition and subsequent reattachment. This phenomenon
is called laminar separation flutter. This subject is covered in more detail in Chapter 1.

This work, however, does not aim to bring contributions and results from a physical point of
view, as has been brilliantly done in other articles ([2] [3] [4]). But instead, it takes advantage of the
complexity of this phenomenon to contribute in the area of turbulence modeling, pushing the limits
of well established models. The relevance of this study is reiterated mainly in view of the inability
to correctly predict this phenomenon using classical tools, like RANS simulations complemented by
low-cost turbulence models, such as Spalart-Allmaras [3].

With this in mind, this work proposes, at first, a corrective term for the turbulence model. This
correction is achieved by the data assimilation (or field inversion) technique, which takes advantage
of high-fidelity data by solving an optimization problem. Chapter 2 is dedicated to a presenta-
tion and analysis of the high-fidelity data used in this work, obtained through a DNS simulation.
Consecutively, the classical modeling framework used in this work will be discussed in Chapter 3,
consisting of the RANS modeling with the Spalart-Allmaras turbulence equation; alongside with the
BCM transition model. In order to understand the numerical tools and methods used to simulate the
aforementioned mathematical framework; Chapter 4 will deal with the numerical implementation,
supported by the Finite Element Method. Additionally, a direct comparison will be made between
DNS and RANS simulation.

Finally, Chapter 5 will formally address the data assimilation technique. Several studies have
already proposed similar models [4] [5], introducing a multiplicative correction to the production or
destruction terms in the turbulence equation. However, few of them carried discussions about ideal
modeling choices. Among them, what should be the form of this corrective term? And how does it
influence the performance of correction? Additionally, different physical data can be used as a refer-
ence for the optimization problem. How does data influence prediction capabilities? These answers
are given in depth through adjoint sensitivity analyses, in addition to a thorough comparative study
of the results. A rigorous technical presentation and discussion of results is carried in this Chapter.
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Chapter 1

Laminar Separation Flutter

“Setbacks and disasters are negative virtues.”

Alberto Santos Dumont

This chapter aims to objectively discuss the physical phenomenon that underpins this work.
Given its complexity and highly nonlinear nature, laminar separation flutter is an aeroelastic insta-
bility discovered in recent years. In order to present it satisfactorily, it is necessary to contextualize
aeroelasticity studies. Next, a brief discussion of aeroelastic instabilities will be carried out, followed
by pertinent comments about the nature of the transitional Reynolds regime. Finally, the laminar
separation flutter will be presented; along with recent research advances.

1.1 Introduction

Not long after the first officially observed flight, carried out in Paris by Brazilian engineer Alberto
Santos Dumont, an effervescent era of evolution of aircraft designs began. The desired advances
were clear: more maneuverability, rate of climb and speed. However, many of these improvements
were made at the expense of a solid structural construction, making aeroelastic instabilities more
likely to occur. For some years, there were no explanations for some of the failures seen in the
aviation world, and much progress was made in an ad-hoc, trial and error manner.

The solution to these failures came only in the 1930s, with the pioneering works of [6], [7] and
[8]. The paradigm shift is due to the understanding that aeroelastic phenomena are an interaction
between aerodynamic, elastic and inertial forces of a flow field acting on a structure. Instabilities
arise from a feedback process: flexible structures undergo deformations caused by aerodynamic
forces, and in turn, these deformations change the aerodynamic load distribution; resulting in an
ongoing interplay.

More holistically, a broad scope of domains makes use of fluid-structure interaction; from the
study of aneurysms with blood flow modeling to the study of the stability of bridges in the face of
winds [ref IFS].

1.2 Types of Instabilites

There are two categories of aerodynamic instabilities: dynamic instabilities and static insta-
bilities, defined respectively based on the oscillatory behavior, or not, of the structure. Both are
illustrated in Figure 1.1, compared to a rigid wing mounted on a torsion spring.
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One classic example of static instability is the divergence instability. This phenomenon arises
whenever the aerodynamic moment exerted by the flow onto the wing cannot be counterbalanced by
the elastic stiffness of the structure, resulting in a non-oscillatory deviation of the wing incidence
from its equilibrium position.

Among the different types of dynamic aeroelastic instability, flutter is the most classic example.
This phenomenon occurs when the total damping of the dynamics is negative, resulting in scenarios
of amplification of certain perturbations. Under a linear approach, one can determine the "critical
reduced speed" of an aircraft, which corresponds to zero net damping, and therefore, the onset of
flutter.

Figure 1.1: Static instability and dynamic instability, respectively. Sabino et al. [2]

Furthermore, there are several types of flutter, among which we can mention the coupled-mode
flutter, transonic flutter, stall flutter and the laminar separation flutter; which is of most interest for
this work, and the least understood. In order to explain it better, one has to understand the physical
context responsible for its emergence: transitional flows.

1.3 Transitional Flow Regime

For high Reynolds regimes, turbulent flow is readily achieved from the first contact with the lead-
ing edge of the wing. This regime is characteristic of commercial flights, and leads to the attachment
of the turbulent boundary layer to the wing surface for a relatively large scope of angles of attack.
However, for aircraft with smaller dimensions such as drones and gliders the Reynolds number is
situated in a transitional regime Re ∈ (104,106), and the transition does not promptly occur at the
leading edge of the wing. Given this, there is a coexistence of laminar, transitional and turbulent
regions; giving rise to nonlinear dynamics, and so, complex viscous phenomena.
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CHAPTER 1. LAMINAR SEPARATION FLUTTER

Figure 1.2: Schematic illustration of a two-dimensional laminar boundary layer separation and of a
laminar separation bubble, respectively. Busquet et al. [9]

In addition, the post-separation laminar flow becomes highly sensitive to perturbations, and
therefore susceptible to transition to turbulence. With that in mind, two scenarios can occur: the
flow remains separated by the entire remaining surface of the wing; resulting in a wake downstream
from the trailing edge. In general, this scenario presents higher drag and possibly lift breakdown.
On the other hand, if adverse pressure gradients are sufficiently large, reattachment will occur;
producing a recirculation zone commonly known as laminar separation bubble (LSB). Inside the
bubble the flow may be circulating and the velocity near the airfoil surface may even be the opposite
direction of velocity the outer flow. There is almost no energy exchange with the outer flow, which
makes the LSB quite stable.

Classically, the laminar separation bubbles were classified into two types: short and long bub-
bles [10]. Short bubbles (Left Fig. 1.3) were defined as possessing a bubble length approximately
102 times the displacement thickness of the boundary layer at the separation point, corresponding
only to a few percent points of the chord. On the other hand, long bubbles (Right Fig. 1.3) were
defined as having a length of order 104 times the displacement thickness of the boundary layer at
the separation point, corresponding to more than 20% of the entire airfoil.

Figure 1.3: A short laminar separation bubble and a long laminar separation bubble, respectively.
Xia et al. [11]

The comments and particularities of the transient Reynolds regime discussed here were made
for a fixed airfoil case, in which the structure dynamics is not taken into account. Now, still in
this physical context, an investigation will be carried out from the perspective of fluid-structure
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instabilities. The phenomenon that interests this work is the laminar separation flutter, in which
the LSB and the negative aerodynamic moment are linked to structure oscillations.

As previously mentioned, the complexity of this phenomenon is manifested through a non-linear
behavior that is difficult to predict, especially for aerodynamic efforts. Muller et al. [12] were the
first to report this fact, denoting that for angles of attack in the range 0◦ <α< 3◦, the lift coefficient
is negative. This study was done for the symmetric NACA663-018 airfoil, and this phenomenon is
observed particularly at Re = 130000. Below and above this Reynolds number, no negative lift is
observed. The same observations were described recently for a NACA0012 airfoil by Ohatake et al
[13]. They observed this phenomenon for Reynolds numbers between Re = 25000 and 70000, and
detected the presence of a low drag regime for angle of attacks in the range of −11◦ <α< 11◦.

Figure 1.4: On the left, evolution of the time-averaged drag coefficient with the angle of attack for
different Reynolds numbers, from the experiments of Ohtake et al. [13]. On the right, evolution of
the time-averaged lift coefficient with the angle of attack for Re = 130000, from the experiments of
Mueller et al. [12]
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Chapter 2

Direct Numerical Simulation

This chapter is dedicated to the presentation and analysis of high-fidelity data that will serve as
a foundation for the techniques that this work aims to study. At first, the concept of DNS (Direct
Numerical Simulation) and the nature of this type of numerical solution will be presented. This will
be followed by a brief discussion regarding the physical context of this results and how it relates to
the concepts presented in Chapter 1. Finally, an extensive analysis of properties that can be obtained
directly and indirectly from the data will be carried out. This step is of fundamental importance for
an adequate understanding of the phenomenon and the nature of the data; and which will guide
decisions and considerations within the scope of modeling.

2.1 Introduction

The Navier-Stokes equations are a set of partial differential equations which describe the motion
of viscous fluid substances. For incompressible and Newtonian fluids, the conservation of mass and
conservation of momentum equations can be respectively stated as

∇·u= 0 (2.1)

∂(u)
∂t

+ (u ·∇)u=−1
ρ
∇p+ν∆u (2.2)

These equations are considered to be the most robust mathematical representation for the de-
scription of fluid dynamics, and for a wide range of applications, they are used for an accurate
description of phenomena under different physical conditions and geometries.

In 1970, mathematician Steven Orszag presented in his article "Analytical Theories of Turbu-
lence" two main ways - so far - to obtain theoretical results regarding turbulence [14]. The first was
through theories of turbulence, which sought to ground a phenomenological understanding of prob-
lems that presented turbulence. Alternatively, one could directly solve Navier-Stokes via numerical
simulation. The term DNS has been used recurrently since then.

However, one may encounter several adversities of numerical nature when opting for this type
of solution. Notably, considering the classical theory of turbulence, it is known that the energy of a
flow dissipates only in spatial dimensions that lie on the Kolmogorov scale

η=
(
ν3

ε

) 1
4
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where ν is the kinematic viscosity and ε is the rate of kinetic energy dissipation. Then, taking
into consideration the definition of the Reynolds number and the properties used in defining the
Kolmogorov scale, one can prove that this scale exponentially depends on the Reynolds number.

This means that as the flow becomes more turbulent, the spatial resolution of the dissipation
becomes substantially lower. And given the highly nonlinear nature of the Navier-Stokes equations,
this poses a problem. If these scales are not solved accurately at the numerical level, the nonlinear
character of the equation will exponentially increase the errors; can lead to solutions that diverge
substantially from physics.

The purpose of this brief discussion regarding the nature of a direct numerical simulation is to
denote the fact that this operation can demand high computational power and time. It is for this
reason that turbulence models were developed as alternatives to DNS. Among them, the Spalart-
Allmaras model will be discussed in Chapter 4.

Fortunately, for this work, data from a direct numerical simulation were provided by Sabino
[2], who studied in depth the stability of the phenomenon of laminar separation flutter throught
theoretical and numerical tools. Given the nature of baseflow, these variables provide a qualitative
understanding of the physical magnitudes of the problem. Notably, U , V , W and P convey the
average dynamics of the phenomenon in equilibrium. The remaining variables uu, vv, ww, uv,
uw and vw denote fluctuations in velocity that the physical context presents. These results were
obtained for 5 angles of attack: 0◦, 0.5◦, 1◦, 1.5◦ and 2◦; all at Re = 50000 for a NACA0012 profile.

2.2 Properties Analysis

2.2.1 Direct Properties

In this first moment, analyzes based on direct visualizations of the quantities obtained by DNS
will be presented. This discussion will reinforce qualitative results obtained in recent years regard-
ing the Laminar Separation Flutter.

We start by showing the horizontal velocity of the baseflow around the NACA0012 airfoil REF-
FIG. The loss of symmetry is easily noticed as the angle of attack increases; as well as the advance
of the boundary layer detachment point in the extrados.

Figure 2.1: Horizontal velocity comparison angle of attack α= 0◦.
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CHAPTER 2. DIRECT NUMERICAL SIMULATION

Figure 2.2: Horizontal velocity comparison angle of attack α= 2◦.

On a more cautious analysis of the last image of Fig. 2.2, one can easily perceive the laminar
separation bubble formed in the extrados, close to the trailing edge (Fig. 2.3). The scales for this
visualization were adapted in order to facilitate the identification of the region from which the hori-
zontal velocity becomes adverse.

In particular, in this region, one can denote the existence of a thin layer of positive velocity
amidst the adverse velocity field. It accurately represents the contour of the laminar separation
bubble; containing within it a recirculation zone represented by shades of more intense red.

Through visualizations of the same nature, it is easy to see that this recirculation zone begins to
form from an attack incidence of 1◦. This fact is of substantial relevance, as it explains the pertinent
intricacies of the dynamics for an angle between 0◦ and 1◦; and between 1◦ and 2◦.

Figure 2.3: Horizontal velocity for α= 2◦, denoting the Laminar Separation Bubble.

Finally, we can check the evolution of the perturbation velocity term on the z-axis (Fig. 2.4). This
physical quantity serves as a metric of the three-dimensional order variations that are ignored when
analyzing only the superposition of this dynamics in 2D. Based on this, it can be concluded that as
we approach α = 2◦, the phenomenon presents a more intricate dynamics in different planes along
the z-axis.
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Figure 2.4: Fluctuation term in z direction comparison for different angles.

2.2.2 Processed Properties
In addition to the properties presented above, there are other physical quantities that are of

interest for this work and that will help to guide the aspects more related to modeling; that will be
presented in the following chapters.

Along these lines, one can check the validity of Boussinesq’s hypothesis; which serves as the basis
for numerous RANS models. In essence, the Boussinesq hypothesis major claim is that the main axis
of the Reynolds stresses coincides with those of the average strain. This allows the Reynolds stress
tensor to be modeled analogously to the classical stress tensor; and a turbulent viscosity variable is
introduced.

u′
iu

′
j = 2νtSi j − 2

3
kδi j

Where νt is the turbulent viscosity, k is the turbulent kinetic energy and δi j is the Kronecker
delta . Details pertinent to RANS modeling will be formally presented in Chapter 3.

Given this definition, Schmidt et al. [15] introduced an indicator defined through the inner
product between the traceless stress tensor (also called the anisotropic stress tensor) R= u′

iu
′
j−2

3 kδi j
and the mean strain rate tensor S

ρRS = |R : S|
∥R∥∥S∥ (2.3)

This indicator measures the proportion- ality between these two tensors and is analogous to the
cosine of the angle between vectors. The metric varies between 0 and 1, and if ρRS = 1, then Boussi-
nesq’s approximation is fully respected. Furthermore, Schmidt et al. [15] established (through
geometrical reasoning) that if ρRS > 0.86, then it would make sense to use a linear eddy-viscosity
approximation.
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Figure 2.5: Boussinesq validity analysis for different angles of attack.

In view of these results, it is clear that the linear turbulent viscosity framework is sustained in
the trailing edge region immediately after the profile. This fact surprisingly holds even for angles
of attack greater than 1◦, for which the laminar separation bubble is already formed. On the other
hand, as we move further downstream from the profile, Boussinesq’s hypothesis loses its validity.
This discussion is of paramount importance, since this work aims to remain within a framework of
modeling supported by Boussinesq’s hypothesis.

Additionally, one can calculate the turbulence production term using the quantities provided by
DNS. This physical quantity is quite relevant since it will be of absolute importance to understand
the magnitude and spatial distribution of the turbulent aspects in the phenomenon.

Production=−uu
∂U
∂x

−uv
(
∂V
∂x

+ ∂U
∂y

)
−vv

∂V
∂y
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Figure 2.6: Turbulence production for different angles of attack.

And therefore, it is possible to expect that the chosen turbulence model will intervene in the
regions shown in Fig. 2.6. It is reinforced that, as the angle of attack increases, a region of high
dynamic complexity is formed near the trailing edge of the extrados.

2.3 Aerodynamic Coefficients

A final analysis that can be easily obtained using DNS data is within the scope of the aerody-
namic efforts acting on the NACA0012 airfoil. In this context, the pressure coefficients Cp, skin
friction C f and moment coefficients Cm will be analyzed.

Initially, we show through the variation of the global efforts that, in fact, the complexity of the
phenomenon is also translated in the aerodynamic forces that act on the profile. Notably, one should
remark the highly nonlinear aspect linked to the variation of forces as we vary the angle of attack.
This is also reinforced by qualitative factors, since the global lift remains negative until α= 1◦ and
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the global acting moment changes from negative to positive for an angle of attack between α= 1.5◦

and α= 2◦

Figure 2.7: Global aerodynamic efforts for different angles of attack

Complementing this analysis, it is also possible to study the local influence of the laminar separa-
tion bubble on the airfoil. One quantity that best depicts these effects is the skin friction coefficient
for the extrados. It can be clearly seen that for the incidence angles 1.5◦ and 2◦, the value of C f is
negative precisely where we expect to find the LSB.

Figure 2.8: Skin Friction Coefficient at extrados for α= 2◦
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Chapter 3

Classic Modeling Framework

This chapter is devoted to formally presenting the modeling framework that will be studied in
this work. At first, the averaging process and the Reynolds decomposition of the Navier-Stokes
equations will be discussed; in addition to the paradigms linked to RANS modeling. Next, the
Spalart-Allmaras turbulence model will be discussed in depth. This step is of crucial importance,
since this work aims to obtain corrected Spalart-Allmaras models; therefore a robust understanding
of the physical significance of each term in the model is indispensable.Finally, a discussion will be
carried out about the role of transition models, which act in a complementary way and correct several
deficiencies of classical RANS modeling in transition regimes.

3.1 RANS Equations

3.1.1 Introduction
As discussed in the previous chapter, Claude-Louis Navier (1785-1836) and George G. Stokes

(1819-1903) formulated the fundamental mathematical framework for the description of Newtonian
fluid flows. Despite the generality of the Navier-Stokes equations (2.1, 2.2) the diversity of scales
present even today limits, in some cases, the direct numerical simulation of turbulent flows. Osborne
Reynolds (1842-1912), however, provided a viable alternative to the classic solution. Realizing that
the properties of turbulent flows can be described by superposing a fluctuating term to an average
value, Reynolds suggests that the fields present in the governing equations be divided into average
and fluctuating or turbulent components [16].

The formal result of this procedure is, of course, a new equation in which the turbulent field
effects are isolated from the mean flow descriptive terms. Despite being attractive, this solution
strategy poses a difficult obstacle: its application leads to the emergence of new dynamic variables.
In this way, the modeling of the properties of turbulent flows in mean and stochastic components give
rise to a number of independent dynamic variables greater than the number of available governing
equations. The Reynolds strategy then results in a mathematically indeterminate problem, which
is usually referred to as the “closing” problem. In a rigorous procedure, manipulating algebraic
applications applied to the Navier-Stokes equations provides additional equations, which, in turn,
present new higher-order unknowns. Such behavior is typically observed in nonlinear stochastic
systems.

From this point of view, a turbulent velocity field decomposes into:

u(x, t)=u(x)+u′(x, t)

where u(x) is the average velocity (statistically stationary) and u′(x, t) the fluctuating component.
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The decomposition of Reynolds fields represents a way to introduce a statistical formulation for the
description of the dynamics of turbulent flows, thus enabling its numerical modeling. However, as
in all statistical descriptions, there is, necessarily, a loss of potential information important when
adopting a restricted number of parameters.

3.1.2 RANS Derivation
Given the definitions discussed above, one can start the process of decomposing and averaging

through the conservation of mass equation:

∂ui

∂xi
= 0−→ ∂(ui +u′

i)

∂xi
= 0−→ ∂ui

∂xi
= 0 (3.1)

In the above operations, the mean value of the spatial derivative of a quantity was assumed to be
equal to the spatial derivative of the mean value of that same quantity. Which yields equation (3.1).
The Navier-Stokes equation can therefore be rewritten using the chain rule in the second term on
the left side of Eq. (2.2):

u j
∂ui

∂x j
= ∂uiu j

∂x j
−ui

∂u j

∂x j
(3.2)

where the second term on the right hand side is zero by the continuity equation. Using the above
equality and taking the time average of the Navier-Stokes equation, one obtains:

∂ui

∂t
+ ∂uiu j

∂x j
= ∂σi j

∂x j
(3.3)

Since the mean of ui(x, t) is statistically stationary, the first term on the left side of the last
equation is zero. Taking into account now the Reynolds decomposition, and the reapplication of the
averaging operator in Eq. (3.3):

∂ρuiu j

∂x j
= ∂

∂x j

[
ρ(uiu j +u′

iu
′
j

]
(3.4)

and in turn, back in Eq. (3.1), we finally have the Navier-Stokes equations written in terms of
the decomposition of Reynolds fields:

ρu j
∂ui

∂x j
= ∂

∂x j

[
σi j −ρu′

iu
′
j

]
(3.5)

Equations (3.5) are usually called Reynolds Averaged Navier-Stokes equations (RANS). It is also
observed they present exactly the same composition as the Navier-Stokes equation for laminar and
stationary flows, Eq. (2.2), with the exception of the last term on the right hand side, which repre-
sents the turbulent contribution to the mean flow.

3.1.3 Boussinesq Hypothesis
As shown, the time-averaged deduction of the governing equations introduces new unknown

terms, containing velocity fluctuation products −u′
iu

′
j. These terms represent momentum fluxes that

act as additional stresses in the flow, thus being called “turbulent stresses” or “Reynolds stresses”.
The first model for the mathematical description of turbulent stress terms was presented by

Boussinesq (1877) [15]. The author proposed that the contribution of turbulent stresses to mo-
mentum transfer be described in an analogous way to that observed by the action of the molecular
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viscosity of the fluid, thus introducing the concept of turbulent viscosity, νt. Therefore, Boussinesq’s
hypothesis states that:

−u′
i(x, t)u′

j(x, t)= νt
∂ui

∂x j
(3.6)

There is clearly a direct analogy between the model proposed by Boussinesq and the molecular
viscosity model, ν, for Newtonian fluids. However, in contrast to molecular viscosity, turbulent
viscosity is not a property of the fluid, but of the flow, and therefore must include parameters that
adequately characterize turbulent tensions in its formulation.

Over the last few years, Boussinesq’s hypothesis, in a generalized form proposed by Kolmogorov
(1942), has been widely used for modeling turbulent flows. According to Kolmogorov, the Reynolds
tensor, in its general form, is expressed by:

−u′
i(x, t)u′

j(x, t)= νt

(
∂ui

∂x j

∂u j

∂xi

)
− 2

3
κδi j (3.7)

where δi j represents the Kronecker delta and the turbulent kinetic energy per unit mass.
Given this proposed framework, the last step for the definitive closure of the RANS equations is

a turbulence model that will deal with the turbulent viscosity. In this work, the Spalart-Allmaras
model will be used.

3.2 Spalart-Allmaras Model

The first turbulence model that showed widespread success and was used fairly widely in a vari-
ety of engineering disciplines was the k−ϵ model (1973) [17]. However, the model is not accurate at
predicting boundary layer flows with adverse pressure gradients; which is particularly challenging
for aerofoils and wings at high angles of attack, and for turbo-machinery applications. In addition,
the k− ϵ model tends to get even worse when shocks are present because that increases the magni-
tude of the adverse pressure gradient.

In view of this, some notable models have been proposed in order to correct the deficiencies of
k− ϵ; among them are the k−ω model (1988) [18] and the Spalart-Allmaras model (1994) [3]. Due
to the fact that it is described only by one equation - giving the opportunity for an in-depth study -
this work will only deal exclusively with the latter.

3.2.1 Modified Eddy-Viscosity

The first notable feature of the Spalart-Allmaras model is the careful handling of the dynamics
close to the wall. It is known that the value of y+ varies linearly with the turbulent viscosity νt in
the logarithmic region (y+ > 30) (Fig. 3.1). However, in the sub-viscous layer (y+ < 5), this profile is
quartic, that is, νt ∼ (y+)4. This framework poses an inconvenience, as it requires substantially finer
discretization for regions close to the wall.
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Figure 3.1: Eddy-viscosity νt and modified eddy-viscosity ν̃. [19]

Taking this into account, the Spalart-Allmaras model solves an equation not for νt, but for ν̃; a
modified eddy-viscosity. It remains perfectly linear both in the sub-viscous layer and in the logarith-
mic region, offering more numerical stability. This is done through the following transformation:

νt = ν̃ fv1 fv1 = χ3

χ3 + c3
v1

χ= ν̃

ν
(3.8)

where fv1 conveys a cubic behavior, alongside with viscous damping effects.

3.2.2 Turbulence Equation

We finally present the turbulence equation for the Spalart-Allmaras model:

∂ν̃

∂t
+∇· (uν̃)︸ ︷︷ ︸

Transport

= cb1Sν̃︸ ︷︷ ︸
Production

+1
σ

[∇· (ν+ ν̃)∇ν̃+ cb2(∇ν̃)2]︸ ︷︷ ︸
Diffusion

− cw1 fw

(
ν̃

d

)2

︸ ︷︷ ︸
Destruction

(3.9)

• Transport - The first component of Eq.(3.9) is centered around the temporal derivative and
the convection term. This component is fairly common in many transport equations and it
allows us to convect the modified eddy-viscosity ν̃ across space and time.

• Production - The second term of the equation corresponds to the generation of turbulence in
regions of high shear. The way that the model does this is by assuming that the generation is
proportional to the effective shear rate S in the mean velocity gradient.
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• Diffusion - Regarding the diffusion term there are two main different components. The first
one corresponds to the linear classic diffusion, as it can be seen in many other transport equa-
tions. However, there is an additional non-linear component that models more subtle phenom-
ena. Particularly, this term was first introduced and calibrated to correctly account for the
spreading of a wake profile, at the edge of the turbulent region [3]. Concerning other appli-
cations, this component will likely affect the behavior downstream of an airfoil or a diffusion
section in a duct.

• Destruction - Finally, there is the destruction term. Physically, turbulence is mostly de-
stroyed close to the wall through a combination of the inviscid blocking of pressure fluctuations
from the unsteady turbulent field, and momentum damping due to viscosity. This explain the
distance to the nearest wall d on the denominator, which will increase the effects of destruction
as d → 0. Additionally, the function fw → 0 as d → 0, avoiding any mathematical inconsisten-
cies.

However, the destruction term in Spalart-Allmaras only accounts for the inviscid blocking
(pressure fluctuation damping). The viscous damping effect is built into the definition of ν̃, as
seen in Eqs.(3.8).

Now, one can say the closing problem is complete. In a short recap, the Spalart-Allmaras equation
gives a robust estimate for the turbulent viscosity νt, which in turn closes the Reynolds stress tensor
−u′

iu
′
j, completing the framework established by the modeling proposed by the RANS equations.

3.3 Transition Model
Despite the closure of the RANS equations using the Spalart-Allmaras model, many details in-

trinsic to the physics of the transition phenomenon are commonly neglected. Before employing
data-driven methods - it is necessary to make use of every complementary tool available. For the
phenomenon that underlies this work, the use of transition models is therefore justified.

In general, these models are coupled to classical turbulence models (ie. k− ϵ) and act on the
production term through a multiplicative factor. When in a laminar region, this factor will be null;
inhibiting the effect of the turbulence model. On the other hand, it will allow the model to func-
tion fully when in a fully developed region. Additionally, it will allow a partial functioning of the
turbulence model precisely in the region characterized by the transition.

One of the first models that served this purpose was the γ−Reθ (2009) [20]; composed of two
equations. Despite some theoretical problems, such as the lack of respect for Galilean invariance,
this model inspired several others; as the BCM model [21], which will be used in this work. As men-
tioned above, this type of model relies on modification of the production term to provide transition to
turbulence. Here, the production term is multiplied by the intermittency distribution function γBC:

∂ν̃

∂t
+∇· (uν̃)= γBC cb1Sν̃+ 1

σ

[∇· (ν+ ν̃)∇ν̃+ cb2(∇ν̃)2]− cw1 fw

(
ν̃

d

)2
(3.10)

where the intermittency function is given as:

γBC = 1−exp(−
√

T1 −
√

T2) (3.11)

First, T1, is defined given as the following:

T1 = max(Reθ−Reθc,0)
χ1Reθc

(3.12)
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where the value of the calibration constant χ1 is 0.002 and the momentum thickness Reynolds
number along with the vorticity Reynolds number and is given as:

Reθ =
Reν,max

2.193
where Reν =

ρd2
wΩ

µ
(3.13)

And Reθc is defined as the critical momentum thickness Reynolds number, which is a correlation
that is based on the data gathered from several transition experiments, and indicates the emergence
of transition.

In essence, this first term will check for the entire domain if Reθ > Reθc; and if so, T1 will be
activated. However, as it can be seen in Eq.(3.13), Reθ = f (Reν), and in turn, Reν is a function of d,
the wall distance. This means that for regions very close to the wall, T1 will likely fail to indicate
turbulent activity. That’s why an additional term was added:

T2 =
max(χ2

νt
ν

,0)
χ2

where χ2 = 50 (3.14)

Which will always return a significant value, specially for the boundary layer and regions near
the wall. The values of the calibration constant χ2 were found through numerical experimentation.

Finally, the modelling scheme is complete. In a quick recap, it is composed of the RANS equa-
tions, the Spalart-Allmaras turbulence model, and the BCM transition model. Given this, the next
chapter will present some relevant details of the numerical implementation of this theoretical frame-
work; in addition to preliminary results in an attempt to describe the aerodynamic forces caused by
laminar separation flutter.
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Chapter 4

Numerical Implementation

4.1 Introduction

After a complete understanding of the aspects related to classical problem modeling, this chapter
will address some details regarding the numerical implementation. The mathematical formalism
presented in this section serves not only for RANS simulations, within the framework presented in
Chapter 3; but it was also used to generate the high-fidelity data discussed in Chapter 2.

First, the numerical domain will be displayed, including a discussion of boundary conditions.
Next, the weak formulation of the equations presented so far will be discussed, and the importance
of dealing with the problem in its variational form. With this, we will be able to present the Finite
Element Method (FEM) and complementary details relevant to a consistent convergence of the re-
sults. Finally, preliminary results will demonstrate the shortcomings of the RANS-SA simulation
(with the transition model), with respect to DNS high-fidelity data. This final discussion will be the
main motivation for the adoption of data-driven techniques, using Data Assimilation in Chapter 5.

4.2 Methodology

4.2.1 Numerical Domain

We introduce the numerical boundary conditions used in the solution of the provided problems
before presenting the weak formulation of the Navier-Stokes equations. An inlet frontier Γin will
limit the unbounded physical domain upstream, while the other border Γout will limit the upper
and lower zones at the outflow. . The airfoil surface is still indicated by Γlat, and Figure 1.6 shows
where these various borders are located. We will impose a null fluid velocity at Γin and a continuity
velocity requirement at the fluid-structure interface since the airfoil is assumed to travel forward on
a resting fluid. Along with a natural stress-free condition at Γout, is numerically closed as:

u(x, t)= 0 x ∈Γin (4.1)

u(x, t)=uw x ∈Γw (4.2)

σ(u, p) ·n∞ = 0 x ∈Γout (4.3)

with n∞ the outward unit normal vector of the Γout borders.
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Figure 4.1: Schematic illustration of the computational domain for the simulation. Sabino et al. [2]

4.2.2 Weak Formulation
Originally the weak formulation has been introduced by mathematicians to investigate the be-

havior of the solution of partial differential equations, and to prove its existence and uniqueness.
Later on, numerical schemes have been based on this formulation which lead to an approximate so-
lution. The weak formulation is also called the variational formulation, where the solution satisfies
a minimum of energy.

Taking the Navier-Stokes equations 2.2 as an example, we can define the state variables u and
p as belonging to the functional trial spaces V 2

u and V 1
p , respectively:

u ∈ V 2
u with V 2

u = {a ∈H 2(Ω f )|a|Γin = 0} (4.4)

p ∈ V 1
p with V 1 = {b ∈H 1(Ω f )} (4.5)

where H 1 and H 2 represent the Sobolev spaces. Concomitantly, we define the test functions v
and q in the test functional spaces V 1

v and L 2 as:

v ∈ V 1
v with V 1

v = {a ∈H 1(Ω f )|a|Γin∪Γw = 0} (4.6)

p ∈L 2 (4.7)

where the test function v is set to be zero on all Dirichlet conditions, where the solution is known.
The weak formulation can be obtained by multiplying equations 2.2 by the test functions v and q,
respectively, and integrate them over the domainΩ f . One example that can be helpful to understand
this procedure is the variational formulation of the Laplacian term:

−∆u= f in Ω

u= 0 on ∂Ω
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Introducing the test function v, that belongs to V 1
v (or H 1

0 , this is, a regular Sobolev space that
is null on the boundaries ∂Ω), and integrating by parts:

−
∫
Ω f

∆uv =
∫
Ω f

∇u ·∇v =
∫
Ω f

f v +
∫

∂Ω f

v
∂u
∂n

in Ω f

where n is the unitary normal to Ω f . And considering that v ∈H 1
0 , the problem becomes:

∫
Ω f

∇u ·∇v =
∫
Ω f

f v

And so, applying this techniques and considerations to equation 2.2, we obtain:

∫
Ω f

(u∇)uv + ν∇u :∇v − p∇v − q∇u= 0 ∀v, ∀q (4.8)

Now, only derivatives of first order of are involved in equation 4.8. The integration by parts
operation lowers the order of the problem’s maximum derivative and removes the prerequisite that
u ∈ V 2

u . Additionally, since the pressure variable doesn’t require any derivatives, p no longer has to
be a member of V 1

p .

Therefore, the problem can restricted to the search of functions u ∈ V 1
u and p ∈L 2. The solution

set has been expanded, hence the denomination weak form. If a solution of this weak form exists,
then its uniqueness is proven by the Lax–Milgram theorem [22], key ingredient used to build the
Finite Element Method.

Additionally, Newton’s method is used to deal with the nonlinearities of the equation at the
numerical level. This allows the problem to be posed as a linear problem, which is of high relevance
for the use of the Lax-Milgram theorem.

4.2.3 Mesh Generation

Now for the space discretization we consider the partition of the fluid domain Ω f into a finite
number Nele of closed disjoint D-dimensional elements K , forming a discrete domain Ωh

f , such
that

Ωh
f =

Nele⋃
e=1

K⌉

The meshing method is based on a Delaunay triangulation method, carried out by the open-
source software FreeFem++ (REFFF Hecht, 2012), which is used to solve partial differential equa-
tions based on a discretization using the Finite Element Method, as explained in the next section.
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Figure 4.2: Two-dimensional triangular mesh around the NACA0012 airfoil, at α = 0◦, on the top
left, with the close-up views near the airfoil, on the bottom left, and near the leading and trailing
edge zones, on the right. Sabino et al. [2]

The FreeFem++ software restricts the elements K⌉ to simplex elements, such as triangles for
two-dimensional meshes or tetrahedra for three-dimensional meshes. The software enables a local
adaption based on a number of user-defined parameters, enabling an effective discretization method
and the construction of an unstructured mesh.

Hecht et al. (1988) provides a description of the adaption algorithm. A metric matrix based on
the Hessian of the user-defined fields determines the grid-point distribution of the resulting mesh.
By setting the desired interpolation error of the fields on the new mesh, the precision of the adapta-
tion (and consequently the grid-point density) can be managed. The minimum and maximum edge
diameters as well as the anisometric coefficient are additional factors that can be specified.

The adopted mesh is unstructured and refined very close to the profile, where the huge gradients
are likely to occur, and becomes increasingly coarse as it moves away from the profile. Moreover, it
should be specified that throughout the study, once the profile becomes inclined (AOA > 0), it is the
mesh that adapts and not the profile that moves.

(a) Degrees of freedom for a continuous piecewise lin-
ear finite piecewise quadratic element space P1.

(b) Degrees of freedom for a continuous piecewise
quadratic finite element space P2.

Figure 4.3: Two- and three-dimensional standard element cells: illustration of the number of degrees
of freedom for the P1 and P2 finite element spaces. Sabino et al. [2]
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4.2.4 Finite Element Method

Although structural engineers began using the finite element method (FEM) in the early 1940s
(Courant, 1943), it was only in the late 1970s and early 1980s that it was made available to the fluid
mechanics community (Babuka, 1973; Pironneau, 1989).With FEM, a solution to a differential equa-
tion is constructed from a series of local approximations. In that regard, we obtain approximations
noted as u≈uh, p ≈ ph, v≈ vh and q ≈ qh.

We opted for the Taylor–Hood basis PD
2 /P1 whose standard representation is present in figure 1.9.

For a two-dimensional problem, one obtains, for each cell, 3 degrees of freedom for the pressure and
6 degrees of freedom per velocity component, whereas for a three-dimensional problem, one has 4
degrees of freedom for the pressure and 10 degrees of freedom per velocity component. Furthermore,
we initially consider the Galerkin method (known as the Bubnov–Galerkin method) for the choice of
the test functions. In this method, the test functions are chosen to be the same as the basis of the
trial functions, such that:

vh(x)=
Nu

dof∑
j=1

Φ j(x),

qh(x)=
N p

dof∑
j=1

Ψ j(x),

Injecting the above decompositions into the discretised version of equation 4.8, one obtains the
following discretised problem:

[
Mu 0
0 0

]
∂

∂t

[
uh

ph

]
+R(uh, ph)= 0 (4.9)

with Mu
i j being the mass matrix operator defined as:

Mu
i j =

∫
Ωh

f

ΦiΦ jdΩh
f (4.10)

And R being the residual operator, classically defined exactly as in [2].

4.3 Preliminary Results

Now, we can finally present comparative results between DNS (Chapter 2) and RANS-SA mod-
eling (Chapter 3); that make use of the numerical methods presented in this chapter.

Analyzing exclusively the aerodynamic efforts, it is possible to perceive substantial differences
between both results. Notably, for the momentum coefficient along the airfoil there is a worrying
discrepancy at α = 2◦. In Figure 4.4a, it is noted that the RANS-SA simulation fails to capture
a considerable increment of this property around x ≈ 0.9; which is precisely where the laminar
separation bubble is located.
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(a) Extradorsal distribution of the moment coefficient
Cm of RANS-SA.

(b) Intradorsal distribution of the moment coefficient
Cm of RANS-SA.

Additionally, in Figure 4.4b, the disagreement between the results is not only quantitative, but
qualitative as well. In the intradorsal trailing edge, the momentum coefficient provided by DNS
becomes positive again, while the RANS-SA simulation remains at negative values.

Since the Laminar Separation Flutter phenomenon is a self-sustained pitch oscillation, the mo-
ment coefficient is of great importance for an accurate description of the dynamics.

Figure 4.5: Direct subtraction of DNS and RANS-SA results for the horizontal velocity at α= 1◦.

Figure 4.6: Direct subtraction of DNS and RANS-SA results for the horizontal velocity at α= 2◦.

Pedro Morel Rosa / ONERA
Non-confidential report and publishable on Internet

31



Data Driven Turbulence Model for Transitional Aeroelastic Instabilities

Another visualization that reinforces the disagreement of the results is the subtraction of the
horizontal velocity field (DNS - RANS-SA). For angle α= 1◦; there is a big difference in this property
mainly in a region posterior to the trailing edge of the profile (Fig 4.5). For α= 2◦, this discrepancy
extends to the extradorsal part of the profile; immediately above the LSB (Fig 4.6).

32 Pedro Morel Rosa / ONERA
Non-confidential report and publishable on Internet



Data Driven Turbulence Model for Transitional Aeroelastic Instabilities

Chapter 5

Data Assimilation

This chapter is devoted to formally presenting the data assimilation procedure and discussing
the results obtained using a slightly modified framework from Chapter 3.

At first, a review will be made about the development of data assimilation methods; in order to
understand the current paradigm. Next, different modeling approaches using Spalart-Allmaras as
a foundation will be presented, along with a discussion of the different types of data that can be
used to correct the original model. In sequence, the Field Inversion method will be presented in its
complete mathematical formalism for the case previously discussed, in addition to details regarding
the numerical implementation. Finally, the section dedicated to methodology ends with a discussion
of complementary tools that provide critical notions about the modeling choices; such as sensitivity
analysis and L-curves.

Consecutively, the results of this work will be presented. The main objective of this chap-
ter is to answer what is the optimal configuration for data assimilation modeling. This
includes choosing the control parameter, data type and optimal parameters for the cost function.
Due to the extensive nature of the studies, two separate analyzes will be carried out, pointing out
benefits and shortcomings of certain choices. Finally, a conclusive discussion will be made taking
into account all the results obtained and different perspectives for data-driven models.

5.1 Introduction
There is nothing new in the idea of using high-fidelity data to correct models. As we know, no

model provides a perfect description of reality; having its limits in the description of a finite amount
of effects and in a specific regime of physical parameters. In many instances, the model correctly
proposes that the dynamics of a phenomenon obeys a specific mathematical framework. Nonethe-
less, it leaves some open constants or functions that will be calibrated by means of experimental
data, and that will allow an optimal fit of the model to the phenomenon. This can be easily seen in
Spalart-Allmaras (Eqn. 3.9) in constants such as cb1, cb2 and cw1.

However, this is not data assimilation. This technique, developed primarily in the fields of mete-
orology and oceanography [23] [24], reinforces a much more intricate relationship between data and
a base model. The combination of these two components can be used to obtain a better description
of the model inputs like initial condition, boundary conditions or a control parameter [25] [26]; in
addition to also demonstrating high efficacy to complete sparse experimental observations [27].

The first use of data-assimilation can be traced back to Kalman et al. [28], where an estimation
of the whole state of the system from limited partial measurements was needed in order to act on
the system with a control law, stabilizing it. The Kalman filter is the design of such observer so that
its prediction is as close as possible to the current state. The final form of this filter can be seen as
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a prediction step, where the model of the dynamical system is applied on the a priori state, and a
correction step, where the external data (or measure) is taken into account through the filter, which
is constructed based on the covariance matrix of the state vector.

This technique has been applied for several purposes in fluid mechanics, such as the estimation
of velocity field from Particle-Tracking Velocimetry snapshots in a planar-jet configuration at Re
= 2000 [29], the recovery of low-Reynolds wall-bounded turbulent flows from wall measure [30],
estimation of Mach number, angle of attack and eddy-viscosity field at high Reynolds number flows
in complex flow configuration [26].

Another class of DA is tied to variational methods (VDA) [31], which are based on the use of
the optimal control theory [32] to minimize the error between observations of a reference flow and
a numerical estimation. One of the earliest applications of this technique was on the weather fore-
cast problem (Talagrand and Courtier, 1987 [33]) under the name of 3D/4D-Var where the tuning
parameters were the initial condition of the dynamical model such that some cost, function of the
error between the model’s prediction and the external data, is minimal.

Concerning the VDA approach, the numerical simulations of turbulent flows over complex ge-
ometries are mostly achieved with the Reynolds-averaged Navier-Stokes (RANS) equations and tur-
bulence models - as presented in Chapter 3 - thus promoting the low computational cost over the
accuracy. Among these, one can distinguish gradient-based optimization (Foures et al. [34], Symon
et al. [35]) and ensemble-based optimization (Iglesias et al. [36], Kato and Obayashi [26]). More
particularly, Foures et al. [34] studied a low-Reynolds cylinder flow [Re = O (102)] exhibiting vortex
shedding. They tuned a volume force acting in the steady Navier-Stokes equations such that its cor-
responding solution best matches velocity measurements, mimicking a real experimental situation
where such measurements are provided by a PIV setup.

At even higher Reynolds numbers, the RANS equations supplemented with a turbulence model
is a reasonable choice for the baseline model, as discussed in Chapter 3, since they usually provide
solutions that aim at approximating the turbulent mean flow. For instance, Li et al. [37] optimized a
set of coefficients in a k−ω RANS model to match as closely as possible the given high-fidelity data.

Furthermore, Duraisamy et al. [4] employed gradient-based optimization techniques to tune
spatially dependent production terms in turbulence models, so as to recover mean-flow data obtained
by DNS or experiments. This specific procedure is also known as the Field Inversion method; and
it has been widely used as an intermediate step of machine learning-corrected RANS models, which
will be presented in Chapter 5. In more recent works, Franceschini et al. [5] showed that the data-
assimilation procedure allowed an almost exact recovery of the mean-flow over a backward-facing
step. Contrary to a scalar correction source term in the equations governing the turbulent scales,
the vectorial momentum correction term allows for a much more flexible model to accommodate the
prescribed mean-flow feature.

In all referenced works, there are non-trivial choices regarding the level of freedom given to
correction. Those can provide excellent results, however at the cost of completely evading the physics
proposed by the base model. This work values a careful analysis of these choices and presents a
comparative study of several possibilities within the Field Inversion framework. Given this, results
of a modeling similar to Duraisamy [4] will be discussed with the control parameter in all possible
terms of the turbulence equation (Eqn. 3.9); and not just in the term of production. The correction
with the term source will also be presented, inspired by the work of Franceschini [5].

5.2 Methodology
In this section a presentation will be carried out regarding the corrections to the base model

proposed by this work. Next, the mathematical formalism of variational data assimilation will be
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introduced; in addition to the low-memory BFGS algorithm [38] for the numerical computation of
the cost-functional minimum.

Subsequently, techniques with the potential to provide complementary analyzes to the proposed
correction will be presented. Not only do they allow a robust choice of optimal parameters linked to
optimization, but they also allow a critical comparative understanding of the different corrections.

5.2.1 Modified Spalart-Allmaras Modelling
Now, we make a quick review of the equations that compose the modeling framework proposed

in this work, taken from Chapters 2 and 3. We use a simplified Navier-Stokes model in which
the chaotic and complex character of turbulence is seen as a superposition of a behavior mean and
statistical fluctuations, modeling RANS (Eqn. 3.5). The fluctuations that could not be closed by this
modeling are framed within the Boussinesq hypothesis (Eqn. 3.7), which introduces a new variable:
turbulent viscosity. In turn, we use the Spalart-Allmaras turbulence model to solve this variable
(Eqn. 3.9), thus closing the problem. Finally, given the particularities of the physical phenomenon
studied, we use a transition model (Eqn. 3.10). This enables the production of turbulence the
possibility of being fully functioning, partially active or null, depending on the spatial region. We
can quickly present once again these three equations as:

u ·∇u+∇p =∇· [(ν+νt(ν̃))∇u]∇·u= 0 (5.1)

u ·∇ν̃= s(ν̃,∇ν̃,∇u) (5.2)

Where the production, diffusion and destruction term of the Spalart-Allmaras model are con-
densed in the term s(ν̃,∇ν̃,∇u).

The first correction to the Spalart-Almaras model that we present does not propose the addition
of any term. This correction, by contrast, focuses on the boosting or diminishing of the different
terms of the original equation; thus providing a physical understanding of the modification. For this
technique, we explicitly show the four terms inside s(ν̃,∇ν̃,∇u):

u ·∇ν̃︸ ︷︷ ︸
Transport

=βprodγBCP(ν̃)︸ ︷︷ ︸
Production

+D1(βdi f f , ν̃,∇ν̃)︸ ︷︷ ︸
Diffusion

+βcross−di f f D2(ν̃)︸ ︷︷ ︸
Cross-Diffusion

−βdesE(ν̃)︸ ︷︷ ︸
Destruction

(5.3)

In the equation 5.3. the terms P, D1, D2 and E refer to the terms of production, linear diffusion,
cross-diffusion and destruction; presented in the equation 3.9. In this new equation, we present the
4 corrective control parameters concomitantly: βprod, βdi f f , βcross−di f f and βdes. However, for each
test performed, only one parameter will be chosen to be corrected, while the others will be 1 in the
entire space. Furthermore, we reiterate the choice of splitting the diffusion term in two; which is
supported by the discussions made in Chapter 3.

At this point, several questions can already be asked. Among them, it is natural to ask which
corrective parameter presents better results. And what physical sense can these results bring? And
even with these answers, it is possible to ask how valid it is to extrapolate these analyzes to physical
scenarios other than the laminar separation flutter.

Another corrective modeling that can be proposed now adds additional terms to the turbulence
equation, acting as forces:

u ·∇ν̃= s(ν̃,∇ν̃,∇u)+ f̃ν̃ (5.4)

This approach was proposed by Franceschini et al. [5], and implies a modification in the balance
between the terms in Spalart-Allmaras; changing the eddy viscosity νt. And therefore having only
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an indirect effect on the velocity ū and the pressure field p̄. Unlike other techniques present in
the literature, this method preserves the Boussinesq assumption, which is in agreement with the
analyzes made in Chapter 1.

Because it is not restricted to any previously defined term, this additional force proves to be
substantially more flexible to make significant corrections and changes in flow. As will be seen in the
following subsections, despite the accuracy of the correction, this approach is more likely to present
results that devoid of physical argumentation. This issue will be one of the major discussions of
this work, and a robust comparative study will be carried out in order to denote the advantages and
shortcomings of each technique.

Finally, a subtle variation is proposed in this work for equation 5.4, which consists of multiplying
the additional forcing term by the modified turbulent viscosity:

u ·∇ν̃= s(ν̃,∇ν̃,∇u)+ f̃ν̃ν̃ (5.5)

This subtle correction brings significant changes, and will be duly supported and grounded in
subsection 5.4.3.

5.2.2 Variational Data Assimilation

Now, once the general idea of how the correction will act in the base model has been presented,
it is necessary to understand how the correction is obtained for each point in space. Let m be a
set of higher-fidelity or experimental measurements that correspond to information extracted from
the flow and M (·) the measurement operator that allows to extract the corresponding measure from
the DNS simulation. For a high-fidelity data q of any nature, this operator would be q , yielding
= M (q) ∈ M, where M is the measurement space, whose norm is given, generically, by || · ||M .

The data-assimilation problem can now be recast into an optimization one, in which the control
parameter β (either a multiplicative coefficient or an additional forcing) will be tuned such that the
cost functional

J (q)= 1
2
||M (q)−m||2M + αpen

2
||β−1||2M (5.6)

is minimal, having as constraints the RANS-SA Eqs. 3.5 and 3.9. In equation 5.6 we also remark
the addition of a penalty term for the correction, weighted by αpen. This is important, as we are not
only looking for a control parameter that provides a solution that is closer to the reference data, but
that does so in the least intrusive way possible.

Following [38], this optimization problem may be solved with an iterative gradient-based algo-
rithm. It requires in particular the computation of the cost functional gradient with respect to the
correction fields, ∇βJ. To obtain an expression of the gradient, we resort to a Lagrangian formal-
ism, that allows rewriting the constrained optimization problem into an unconstrained optimization
problem. To that aim, the state is augmented with a set of Lagrange multipliers (or adjoint vari-
ables) (u†, p†, ν̃†) and we look for critical points of the Lagrangian functional:

L ([u, p, ν̃], [u†, p†, ν̃†],β) = J (u)

− (u†,u ·∇u+∇p−∇· ((ν+νt(ν̃))∇u)Ω
− (p†,∇·u)Ω
− (ν̃†,u ·∇ν̃− s(ν̃,∇ν̃,∇u)−β)Ω

(5.7)

36 Pedro Morel Rosa / ONERA
Non-confidential report and publishable on Internet



CHAPTER 5. DATA ASSIMILATION

where (q1, q2)Ω = ∫
Ω

q1 · q2dΩ represents the inner product related to the classical L2 norm. And

considering the Lagrangian formalism, setting to zero the variation of the Lagrangian with respect
to the adjoint variables [u†, p†, ν̃†] will yield the governing equations 5.1 and 5.2. On the other hand,
setting to zero its variation with respect to the direct variables [u, p, ν̃] provides de adjoint equations
of the RANS-SA model. We remark that, although we present the continuous formalism, in practice,
we solve the discrete adjoint matrix, consisting in the transpose of the Jacobian matrix.

Taking now the variation of the Lagrangian with respect to the control parameter terms, and
considering firstly the multiplicative correction, we have:(

∂L

∂β
,δβ

)
Ω

=−(ν̃†,δβ)Ω −→∇βJ =−ν̃†TSA (5.8)

In which TSA corresponds to the Spalart-Allmaras’ term that was chosen to be corrected. Con-
sidering now the additional forcing approach, one would find:(

∂L

∂f
,δβ

)
Ω
=−(ν̃†,δf)Ω −→∇fJ =−ν̃† (5.9)

Therefore, when using the additional force only the adjoint of the modified eddy-viscosity will
determine the region that will most probably be affected after the correction. With this gradient
information we are able to proceed with the implementation of the BFGS method.

Figure 5.1: Sketch of the BFGS algorithm for a general problem, having f as a control parameter
and q as state. The adjoint variable is denoted by q†. Franceschini et al. [5]

The low-memory BFGS provides a second-order convergence, outperforming, in general, simple
gradient descent methods. This higher-order convergence is achieved through an approximation of
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the Hessian H =∇F∇FJ , which contains the second-order derivatives of the cost functional J with
respect to a generic forcing vector F, for the case of a correction that uses an additional forcing.
This approximation is then used to find the descent direction by solving H −1

n G̃n , where G̃n is the
numerical gradient at iteration n. This matrix is approximated through:

Hn+1 =Hn +
ynyT

n

yT
nsn

− HnsnsT
n Hn

sT
n Hnsn

(5.10)

with H0 =I , yn = G̃n+1G̃n the difference of the gradient between two successive iterations and
sn = Fn+1 −Fn the difference in forcing vectors. A sketch of the coupling of the BFGS method with
our finite-element flow solver is shown in Fig. 5.1.

It is worth-mentioning that the optimization algorithm remains in the vicinity of the initial
(baseline laminar) condition when the BFGS method is used without correcting the gradient direc-
tion (setting L =I in Fig. 4). This shows that informing BFGS algorithm the metric of the mesh is
crucial for the proper convergence of BFGS.

5.2.3 Tools and Techniques
As mentioned earlier, we will now discuss complementary techniques and analyzes that will

inform important choices about modeling. These choices imply choosing the control parameter, the
type of data to be used and even parameters intrinsic to the optimization, such as the αpen penalty.

Sensitivity Analysis

A substantially powerful technique for optimization problems is sensitivity analysis. It essen-
tially consists of the results obtained in the equations 5.8 and 5.9, when computing the Lagrangian
with respect to the control parameter.

More particularly, by obtaining the gradient of the cost function with respect to the control pa-
rameter, we gain an understanding of the regions that, when affected by the control parameter, will
allow a greater variation of the functional cost. This reflects, therefore, the areas that are most
likely to be affected by the control parameter after assimilation.

Among the different advances obtained by this technique, we highlight the study that was made
when varying the type of data used for assimilation. Objectively, there is no reason to expect the
correction to be the same when using the pressure coefficient distribution rather than the skin
drag coefficient; or the velocity field. However, the proposed idea is actually verified; there is an
invariance in the area of correction in relation to the use of parietal data Cp, Cm, C f and velocity
field data u.

Figure 5.2: Sensibility analysis using parietal data C f at α= 2◦.
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Figure 5.3: Sensibility analysis using parietal data Cm at α= 2◦.

Figure 5.4: Sensibility analysis using full field data UV at α= 2◦.

This result can be readily seen in Figs 5.2, 5.3 and 5.4; in which the sensitivity analysis is per-
formed for the correction in the production term at an incidence of 1◦. We reinforce, however, that
although the area of activity remains the same, the assimilation capacity can vary drastically de-
pending on the data used. This is due to differences in the intensity of the correction produced in
order to focus on certain data; and the ability of the data to provide details intrinsic to the phe-
nomenological complexity of the problem.

In the next subsection, this technique will be taken up again in order to complement different
results; explaining eventual failures and possible successes of the correction parameter choice.

L-Curves

A last technique that is of great help in this work is the L-Curves analysis. The L-curve is a log-
log plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It
is a convenient graphical tool for displaying the trade-off between the size of a regularized solution
and its fit to the given data, as the penalization parameter αpen varies. The L-curve thus gives
insight into the regularizing properties of the underlying regularization method, and it is an aid in
choosing an appropriate penalization parameter for the given data.

That is, in practical terms, the L-curves compare the magnitude of the residual between high-
fidelity data and simulation data and the magnitude of the correction parameter. This allows choos-
ing a penalty parameter αpen that works as a compromise between both quantities. On the one hand,
we want to reduce the residue as much as possible; nevertheless, we prioritize that this reduction be
mediated by a correction that is as intrusive as possible.
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Figure 5.5: L-curve analysis for assimilations performed using C f parietal data for the correction of
the production term βprod; at α= 2◦.

As an example, we see that a penalty αpen = 10−5 presents itself as the ideal compromise between
these two scales when we specifically study the control parameter acting on the production term,
using the skin friction coefficient at an incidence of α= 2◦.

5.3 Results: Scenario I

5.3.1 Motivation
As discussed, due to the extensive comparative scope of this work, the results will be divided into

two scenarios. In this first step, the objective is to present the results obtained using only parietal
data (Cp, C f and Cm), and being applied exclusively to the optimization of multiplicative control
parameters in the turbulence equation. It can be considered that this scenario proposes a more
"strict" modeling in the face of scarcity of data.

From a practical point of view, this limited approach is of high value for two reasons. The first
is linked to the replicability of this method, since there is a vastly greater amount of parietal data
available - either experimentally or numerically - than measurements of the complete velocity field.
By proving that accurate corrections can be obtained within this scope of data scarcity, one denotes
the strength and potential of this method for many other applications.

The other relevant concern is related to the degree of freedom given to the correction parameter.
In many studies, excellent results were obtained through control parameters that act as additional
forcings in the turbulence equation (Eqn. 3.9), or even in the momentum equation (Eqn. 2.2). De-
spite the accuracy, these models often offer corrections without physical insight, just fitting the data
provided. With the single restriction on multiplicative control parameters (βprod, βdi f f , βcross−di f f
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and βdes) in the original terms of Eqn. 3.9, one grants more interpretability to the assimilated result,
in addition to ensuring that the founding hypotheses of the base model are respected.

Finally, this analysis proposes to compare 4 control parameters, using 3 different data sources
for 5 angles of attack. Given these 60 results obtained, for organizational reasons, the comparative
study begins by setting the angle of attack at α = 2◦; which has the greatest discrepancy between
the RANS and DNS results, as discussed in Chapter 4.

5.3.2 Analysis for α= 2◦

As mentioned earlier, this first step of the analysis aims at a complete comparison of all control
parameters and all types of parietal data; setting only the angle of attack to α = 2◦. Among the
metrics used to evaluate the assimilated results, there is notably the reduction of the cost function
(Eqn. 5.6); in addition to the L2 error :

L2 error=
∫
Ω

(uDNS −uDA)2 + (vDNS −vDA)2dΩ

However, the values for the L2 error (in red) are normalised with respect to the L2 error of the
original RANS-SA simulation, used as the first guess for the optimization process. Given this, we
present below the value of the post-assimilation cost function and the error under the L2 norm:

Control Parameter

Observation βprod βdi f f βcross−di f f βdes

Moment Coefficient
4.03e-3
7.38e-2

2.62e-3
6.58e-2

3.19e-3
7.49e-2

4.83e-1
3.51e-1

Pressure Coefficient
1.95e-3
7.32e-2

1.71e-2
9.08e-2

3.41e-3
7.60e-2

1.59e-1
1.69e-1

Skin Friction Coefficient
3.87e-2
6.69e-2

6.53e-2
1.00e-1

7.43e-2
8.23e-2

2.45e-1
2.31e-1

Average Reduction 1.88e-2 2.83e-2 2.72e-2 2.95e-1

Table 5.1: Final values for the cost function (black) and the velocity error of the field under the L2
norm (red) for every observation and control parameter at α= 2◦, using αpen = 10−7.

In view of these results, several conclusions can be drawn:

• Clearly, the control parameter value acting on the destruction term βdes is substantially less
effective in its corrections than any other parameter. This result is shown consistently and
regardless of the type of data used. In a more representative view, this fact can be clearly seen
in the correction of the extradorsal distribution of the moment coefficient, using the pressure
coefficient as an observation.
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Figure 5.6: Sensitivity Analysis with respect to the control parameter acting on the destruction
term.

Figure 5.7: Sensitivity Analysis with respect to the control parameter acting on the production term.

And indeed, in the face of a sensitivity analysis of the gradient of the cost function in relation
to the destruction term, an extremely limited spatial influence is perceived (Fig. 5.6). When
comparing with the same analysis for the terms of production (Fig. 5.7); one may notice that
the destruction term fails to change significant behaviors near the laminar separation bubble.
Therefore, this term will be discarded as an option for assimilations.

• Considering now the other control parameters, the similarity between the results provided by
the correction in diffusion and in cross-diffusion is remarkable; with a slight advantage for
cross-diffusion. This can also be clearly seen in Figure 5.8. In addition, the cross-diffusion
term has a non-linear character, unlike production and the classical diffusion term. In view of
this particularity, and in order to narrow the analysis, the classic diffusion term will be absent
in subsequent analyses.

• Finally, it is necessary to discuss the differences between the different types of data used. It is
remarkable the consistency of the results when using the moment coefficient as an observation
for the assimilation. However, for the scope that is relevant to this work, it can be said that
the pressure coefficient presents results as good as it. This makes sense, since from a physical
point of view, they tend to capture the same dynamics. And considering the availability and
greater experimental ease of obtaining data for the pressure coefficient, we will proceed with
it at the expense of the moment coefficient.
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Figure 5.8: Complete comparison of control parameters for the description of the extradorsal mo-
ment coefficient using Cp at α= 2◦

Regarding the skin friction coefficient, it is clear that it does not present results as consistent
as the other two candidates. However, it is the only data that robustly fits the extradorsal skin
friction distribution (as it should). This can be seen in the comparison of Figures 5.9a and 5.9b;
in which Cp and C f were used, respectively.

(a) Extradorsal skin friction coefficient at α◦ described
by an assimilation using Cp.

(b) Extradorsal skin friction coefficient at α◦ described
by an assimilation using C f .
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Taking these results into consideration, it is difficult to clearly point out which is the optimal
configuration in terms of the control parameter and type of observation used for assimilation. We
remain with the pressure and skin friction coefficients; and with the corrective terms in production
and cross-diffusion.

In order to gain more insights into the robustness and consistency of these possible combina-
tions, it is necessary to analyze other aerodynamic regimes. Despite the richness of detail and the
difference between RANS and DNS results for α= 2◦, there is possibly greater dynamic complexity
occurring at α= 1◦. This is due to the fact that this angle is the threshold for the emergence of the
LSB, in addition to marking the beginning of a completely different stability regime [2].

5.3.3 Analysis for α= 1

We now proceed with an analysis of the same nature as in the previous subsection, but for alpha1.
For the reasons mentioned, we restricted the data used only to the coefficient of skin friction and
pressure; and we deal with them exclusively for the optimization of the control parameters acting
on the production and cross diffusion term. With this, we obtain the table 5.2, in which we only
compare the reduction of the cost function.

Control Parameter

Observation βprod βcross−di f f

Pressure Coefficient 5.27e-1 6.05e-1

Skin Friction Coefficient 3.09e-1 5.15e-2

Table 5.2: Final values for the cost function at α= 1◦.

(a) Extradorsal moment coefficient at α = 1◦ using
βprod.

(b) Extradorsal moment coefficient at α = 1◦ using
βcross−di f f .

Here, we have a surprising result exclusively for the assimilation that uses the skin friction
data versed for the optimization of the parameter acting in the cross-diffusion term. This result is
reinforced in bold in the table. Complementarily, one can more substantially perceive this difference
in the curves for the moment coefficient (Figure 5.10a and 5.10b).

It is truly impressive the inability of the data assimilation method to approximate DNS results
when not using the C f data combination and βcross−di f f control. And despite being the best result
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obtained, one can say that - even so - they are unsatisfactory when compared to the potential of this
technique for other angles.

In view of these two results, the uniqueness of the control acting on the cross-diffusion term is
reinforced when compared to the production term. It is evident in the results for α = 2◦ that the
control acting on the production term performs better in several cases; but never in such a way as to
be the only viable option for a robust fix. The cross-diffusion term may slightly underperform, but it
always gives approximate results.

Given this fact, we propose a more holistic discussion, taking into account all the angles of attack
analyzed in this work. For this, only the control parameter in cross-diffusion will be used; together
with data for pressure coefficients and skin drag coefficient.

5.3.4 Analysis for Every α

Finally, we propose a complete analysis for all angles of attack; focusing exclusively on the control
parameter acting on the cross-diffusion term βcross−di f f and using the pressure coefficient and the
skin drag coefficient as data. Differently from the analysis made in subsection 5.3.2; here we opted
for a higher penalization parameter: αpen = 10−8. Based on this, and following the same metrics as
Table 5.1, we have:

Observation

Angle of Attack Cp C f

α= 0◦ 8.54e-3 7.82e-2

α= 0.5◦ 1.04e-2 6.78e-2

α= 1◦ 5.84e-1 1.24e-1

α= 1.5◦ 5.43e-3 1.53e-1

α= 2◦ 2.03e-3 5.64e-2

Table 5.3: Final values for the cost function (black) and the velocity error of the field under the L2
norm (red) for Cp and C f with control parameter βcross−di f f at every angle.

In this table, a direct comparative analysis is made between the results using both data, in such
a way that the best result is highlighted in bold. Immediately, one can perceive a relatively balanced
division of this comparison, suggesting that there are several intricacies and non-trivial weights in
the premise of choosing a data that presents itself as the best source.
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Figure 5.11: Extradorsal moment coefficient at α= 0.5◦, showing better results when βcross−di f f is
used.

Additionally, for smaller angles such as 0 and 0.5; both results match the DNS results perfectly
and do not show any discrepancies, as can be seen in Fig. 5.11

Figure 5.12: Extradorsal moment coefficient at α= 2◦, showing better results when Cp is used.

However, it is noted that there is a tendency for the skin drag coefficient to present better pre-
dictions for the velocity field as a whole. On the other hand, the pressure coefficient performs better
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overall in reducing the cost function, thus making it a better candidate for the sole purpose of more
accurately predicting aerodynamic forces.

Given these results, it is impossible to choose a data source that can be considered the best. Both
have advantages and shortcomings under a holistic analysis, as well as presenting local differences.
As discussed earlier, only the combination between C f and βcross−di f f presents minimally consistent
results for α= 1◦ (Fig. 5.10b). On the other hand, only Cp more accurately captures some extradorsal
efforts at α= 2◦ (Fig. 5.12).

5.3.5 Broader Strategies

In view of all the discussion presented, one can propose a precious idea, which is presented as
the first step to leave the scope of analysis proposed in this subsection. Since there are intrinsic
advantages only to the use of the pressure coefficient as a source, and other advantages exclusive
to the skin drag coefficient; the performance of an assimilation that takes into account both data
simultaneously will be tested.

Unfortunately, this approach does not provide expected results and fails to even provide a suffi-
cient reduction for the cost function, as can be seen in Figure 5.13.

Figure 5.13: Intradorsal moment coefficient at α= 1◦ using combined parietal data Cp +C f .

However, the discussion presented here does not lose its effect, and possibly one of the only ways
to obtain complete results for data assimilation is with the combination of parietal data. This line of
thought motivates and leads the research towards other possibilities, now escaping the restrictions
initially proposed in this subsection.
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5.4 Results: Scenario II

5.4.1 Motivation

Now, taking into account the successes and limitations of an approach based on a relatively
inflexible modeling in the face of scarcity of data, we aim to study possibilities that are outside this
scope. Therefore, this will be studied in two ways:

• The first is to lift the restriction placed on the exclusive use of parietal data. That is, the
results that can be obtained using the entire velocity field will be analyzed. These results
will be valuable in order to serve as a comparative case for the success or adversities of using
parietal data.

• The second analysis remains within the proposal of using parietal data, more specifically, the
combined use of Cp with C f . However, we will now try to give greater flexibility and cor-
rectability to the model through a control parameter that acts as an additional force in the
turbulence equation. This parameter will be multiplied only by the modified eddy-viscosity, in
order to minimally confer a physical character to the additional term.

5.4.2 Field Data

Immediately, we present the results obtained using field data UV for the previously analyzed
case of α= 2◦. In the Table below the results of Table 5.1 are shown again, in order to facilitate the
comparison of results for this case.

Control Parameter

Observation βprod βcross−di f f

Field Data 9.25e-2
4.51e-2

2.70e-2
1.76e-2

Pressure Coefficient
1.95e-3
7.32e-2

3.41e-3
7.60e-2

Skin Friction Coefficient
3.87e-2
3.87e-2

7.43-2
7.43e-2

Table 5.4: Final values for the cost function (black) and the velocity error of the field under the L2
norm (red) using field data, and some previous results, at α= 2◦.

Unlike the comparisons made in the previous subsection, the analysis of the reduction of the cost
function provides few insights into the accuracy of the results, since it does not immediately reflect
the behavior of aerodynamic efforts. For this, we can analyze the 5.14, which shows satisfactory
results, but entirely comparable with the results using parietal data.
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Figure 5.14: Intradorsal moment coefficient at α = 2◦ comparing parietal data and full field data
results.

The great advantage of this approach is shown when a direct comparison of the difference be-
tween assimilated velocity and DNS velocity is observed; as can be seen in 5.15, in contrast to 5.16.

Figure 5.15: Direct subtraction of DNS and assimilated results using parietal data Cp for the hori-
zontal velocity at α= 2◦.

From a critical point of view, it can be concluded that the use of field data is justified and valuable
when the discrepancy between the real phenomenon and the uncorrected result is more spatially
distributed. As an example, one can cite the work of Volpiani et al. [39], in which the correction fills
a large part of the observed flow. As for the study of laminar separation flutter, the main differences
are noticed mainly in the upper part of the trailing edge; where there is the LSB.
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Figure 5.16: Direct subtraction of DNS and assimilated results using full field data UV for the
horizontal velocity at α= 2◦.

Therefore, since the phenomenon studied is dominated by a dynamic that occurs in a relatively
concentrated region, the full-field correction proves to be functional, however, ineffective for captur-
ing the details linked to the laminar separation flutter.

5.4.3 Additional Forcing
Since the idea of using field data did not bring significant improvements, we will now try an

alternative to the multiplicative control parameter; maintaining parietal data. More specifically,
the combination of pressure coefficient and skin friction coefficient data will be used to correct an
additional force.

Unlike the work by Franceschini et al. [5], this additional term will be multiplied by the modified
turbulent viscosity. This choice is justified by the adjoint analysis of the modified eddy-viscosity. One
should recall that this quantity is the result of the gradient of the cost function with respect to the
additional forcing by itself (Eq. 5.9).

Figure 5.17: Adjoint analysis of ν̃† at α= 0◦.

Figure 5.17 shows that, despite the magnitude, this property is not null for regions in which the
flow is still laminar. Notably, this can be seen really close to the airfoil for regions at x < 0.6. This
means that using the additional forcing in Franceschini’s framework is susceptible to correct areas
where the turbulence model should be strictly off. This mathematical and physical inconsistency
can be easily corrected by multiplying the additional forcing by the modified eddy-viscosity:

u ·∇ν̃= s(ν̃,∇ν̃,∇u)+ f̃ν̃ν̃
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Figure 5.18: Extradorsal moment coefficient at α = 2◦ using combined parietal data and an addi-
tional forcing.

And therefore, the model now is physically consistent regarding the spacial domain in which it
can boost or diminish turbulent behavior.

Figure 5.19: Intradorsal moment coefficient at α= 1◦ using combined parietal data and an additional
forcing.

As it can be seen, when analyzing the cases that presented more inconsistencies (α = 2 for ex-
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tradorsal Cm and α = 2 for intradorsal Cm), we noticed a complete agreement with the DNS data.
And in fact, through this technique, all aerodynamic effort curves consistently show perfect agree-
ment with DNS data.

Given this, it can be said that removing the restriction imposed on the exclusive use of multi-
plicative control parameters is highly justifiable. We also reinforce that for this approach it was not
necessary to leave the parietal data frame. This is of absolute importance as it denotes that perfectly
accurate results can be obtained using a limited and localized amount of data.

5.5 Conclusion
In a quick review of this chapter, we present the mathematical formalism associated with the

Data Assimilation method using RANS-SA modeling, with a transition model. One can say that
the originality of this study is associated with the comparative character of several choices that are
commonly made without a robust physical and mathematical discussion.

First, it is necessary to take into account the high-fidelity data that will be used for the assimila-
tion (which many studies readily make use of full-field data). The study carried out here shows that,
indeed, for a more accurate description of the velocity field in its smallest details, field data are in-
dispensable. However, the phenomenon studied here is partially linked to structural efforts; which
enriches the potential of description linked to the parietal data of this structure. In the analyzes
carried out in subsection 5.3 and 5.4, this fact becomes evident. The use of aerodynamic coefficients
(Cp, C f , Cm) is not only sufficient for an accurate description of the phenomenon, it is also more
powerful than the use of whole field data; notably, when using combined parietal data (Cp +C f ).

Parallel to this, there is the choice of the ideal control parameter for the modeling - either by a
multiplicative coefficient in the original terms of Spalart-Allmaras model, or an additional forcing
to the equation. In this line of studies, several results were complemented by sensitivity analyzes
of the cost function with respect to these control parameters. Given this, we show that the term
of destruction are unable to correctly describe the dynamics of the phenomenon. Furthermore, the
production and cross-diffusion terms present robust results; as discussed in subsection 5.3. However,
we have shown that only with the addition of forcing multiplied by the modified turbulent viscosity
we get results that perfectly resemble the high fidelity data.

These results can be easily extended to a critique of the physical validity of the Spalart-Allmaras
model for the phenomenon studied. Even correcting locally the different physical effects that are
contemplated by the model (production, diffusion and destruction of turbulence in the way they were
formulated); we have not achieved a perfect description. Only when we subtly leave the framework
of hypotheses that underlie the model, do we obtain the expected agreement.
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Conclusion

In a general review of the issues and results addressed by this work, there is a focus on a com-
parative analysis of turbulence models corrected by the data assimilation procedure. At first, the
nature of the phenomenon of laminar separation flutter and its intricacies was established; mainly
its localized character and its effect on aerodynamic efforts. Then, high-fidelity data were presented
and discussed, which served as a basis for data driven modeling. Consecutively, the mathemati-
cal and numerical frameworks were fully addressed; in addition to a reiteration of the inability of
classical methods to accurately predict aerodynamic forces. Finally, the different corrections made
possible by the VDA were presented, critically discussed and their results analyzed.

Among the main results and discussions, the advantages and shortcomings of using parietal
data over full field data are reiterated. The latter, despite providing more details on the physical
dynamics of the phenomenon, is not justified as an ideal data for the assimilation procedure. When
analyzing only the performance of the prediction of aerodynamic efforts, the parietal data are excel-
lent; which is convenient, given their abundance in different works and the ease of obtaining them
experimentally.

From a comparative point of view of the different types of parietal data, we find that there
are predictions that undoubtedly occur better with certain choices; such as using the skin friction
coefficient for α = 1◦ and using the pressure coefficient for α = 2◦. This fact directed the work to
explore the combined use of these data, enabling the assimilated model to provide both dynamics,
giving compelling results.

Finally, models based on corrective parameters and additional forcings were also compared. De-
spite the physical understanding favored within the famework of multiplicative parameters, the
additional forcing allows a superposition of physical corrections that proves to be more complete and
effective in the prediction of aerodynamic efforts. It also reinforces the justifications used through-
out the work that made use of analyzes from the adjunct field; leading up to an improvement of the
classically found model of additional forcing.

Among the perspectives and possible directions that this research can take, it is impossible not
to mention the generalization potential of these corrected models within the FIML (Field Inversion
Machine Learning) paradigm. In this way, neural networks or decision trees can be used to predict
corrective control parameters; thus supporting a turbulence model corrected by machine learning.
This paradigm is of extreme interest as it will allow the generalization of the corrected model with
data assimilation to subtly different configurations for which there is no high fidelity data.

Such an approach, however, requires a careful analysis of the input features that will be used for
the model training stage; in addition to the architectural choices of the neural network. This area
blends classical knowledge of fluid mechanics with an understanding of which physical properties
best contribute and describe the corrective parameter.
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